Building Reliable AI Agents: A Developer's Guide to Testing and Evaluation
A practical guide to developing dependable AI agents, focusing on evaluation methods, testing strategies, and best practices drawn from real-world experience.
The rise of Large Language Models (LLMs) has revolutionized AI development, but with this power comes a critical challenge: ensuring reliability and performance. This guide distills years of hands-on experience into practical strategies for building dependable AI agents.
The Foundation: Start with Evaluation
The most common mistake in AI development is rushing to build before establishing proper evaluation methods. Here's why this matters and how to do it right:
Core Principles
-
Start Small, Start Right
- Begin with the smallest possible version of your task
- Create manual examples before writing any code
- Build your evaluation framework before expanding features
-
Ground Truth is Gold
- Manually complete your task multiple times
- Document edge cases as you discover them
- Create a diverse set of test cases
-
Measure Everything
- Track token usage for efficiency
- Monitor response times and costs
- Log all prompt variations and their outcomes
The Developer's Toolkit
Essential Tools
-
Evaluation Frameworks
- Ragas: Open-source evaluation for LLM applications
- LangSmith: Testing and monitoring infrastructure
- OpenAI Evals: Standardized evaluation methods
-
Development Tools
- LangChain: Building complex LLM applications
- Guidance: Structured prompt engineering
- Gradio: Rapid UI prototyping
-
Monitoring & Optimization
- tiktoken: Token usage optimization
- Weights & Biases: Experiment tracking
- Helicone: Usage monitoring and cost analysis
Practical Implementation Guide
Step 1: Initial Setup (20 minutes)
# Core evaluation framework
def setup_eval_framework():
return {
'test_cases': [],
'metrics': {'accuracy': 0, 'token_usage': 0},
'experiments': []
}
# Basic experiment logger
def log_experiment(hypothesis, prompt, results):
return {
'date': datetime.now(),
'hypothesis': hypothesis,
'prompt': prompt,
'results': results,
'observations': []
}
Step 2: Prompt Engineering (20 minutes)
- Start with minimal prompts
- Optimize token usage
- Document variations systematically
Step 3: Testing & Iteration (20 minutes)
- Run standardized test cases
- Analyze failures
- Iterate on prompt design
Best Practices and Common Pitfalls
Do:
- Create evaluations before building features
- Keep detailed experiment logs
- Use deterministic solutions when possible
Don't:
- Skip manual testing
- Ignore token optimization
- Overlook edge cases
Common Patterns for Success
-
The Evaluation First Pattern
Define Success → Create Test Cases → Build → Evaluate → Iterate
-
The Token Optimization Loop
Draft Prompt → Count Tokens → Optimize → Test → Repeat
-
The Ground Truth Pipeline
Manual Examples → Edge Cases → Test Suite → Automated Testing
Practical Walkthroughs
Part 1: Initial Setup & Evaluation Framework (20 minutes)
Let's build a sentiment classifier for product reviews as a concrete example.
- Define Your Minimal Task
# task_definition.py
TASK_DESCRIPTION = """
Task: Classify product review sentiment
Input: Single-sentence review
Output: POSITIVE or NEGATIVE only
Success Metric: >90% accuracy on test cases
"""
- Create Manual Examples
# manual_examples.py
TRAINING_EXAMPLES = [
{"review": "The battery life on this laptop is amazing!", "sentiment": "POSITIVE"},
{"review": "Broke after just two weeks of normal use", "sentiment": "NEGATIVE"},
{"review": "Very comfortable shoes, worth every penny", "sentiment": "POSITIVE"},
{"review": "Terrible customer service, never responded", "sentiment": "NEGATIVE"},
{"review": "Setup was quick and interface is intuitive", "sentiment": "POSITIVE"}
]
TEST_CASES = [
{
"review": "Product arrived damaged and customer service ignored me",
"sentiment": "NEGATIVE",
"reasoning": "Reports both product and service issues"
},
{
"review": "Perfect fit and color exactly as shown online",
"sentiment": "POSITIVE",
"reasoning": "Meets expectations on multiple criteria"
},
{
"review": "Stopped working after the first wash",
"sentiment": "NEGATIVE",
"reasoning": "Clear product failure"
}
]
- Setup Evaluation Framework
# evaluation.py
from datetime import datetime
import json
class ExperimentTracker:
def __init__(self):
self.experiments = []
self.current_experiment = None
def start_experiment(self, hypothesis):
self.current_experiment = {
'id': len(self.experiments) + 1,
'date': datetime.now().isoformat(),
'hypothesis': hypothesis,
'test_results': [],
'accuracy': 0.0,
'token_usage': 0,
'observations': []
}
def log_result(self, test_case, prediction, tokens_used):
if not self.current_experiment:
raise Exception("No active experiment")
result = {
'test_case': test_case,
'prediction': prediction,
'correct': prediction == test_case['sentiment'],
'tokens': tokens_used
}
self.current_experiment['test_results'].append(result)
def end_experiment(self, observations):
if not self.current_experiment:
return
results = self.current_experiment['test_results']
correct = sum(1 for r in results if r['correct'])
total = len(results)
self.current_experiment['accuracy'] = correct / total
self.current_experiment['observations'] = observations
self.experiments.append(self.current_experiment)
self.current_experiment = None
def export_results(self, filename):
with open(filename, 'w') as f:
json.dump(self.experiments, f, indent=2)
Part 2: Prompt Engineering & Token Optimization (20 minutes)
- Initial Prompt Design
# prompts.py
from typing import Dict
import tiktoken
class PromptManager:
def __init__(self):
self.tokenizer = tiktoken.get_encoding("cl100k_base")
self.prompts = {}
def create_prompt(self, name: str, template: str, examples: list):
prompt = {
'template': template,
'examples': examples,
'token_count': len(self.tokenizer.encode(template))
}
self.prompts[name] = prompt
return prompt
def get_formatted_prompt(self, name: str, input_text: str) -> Dict[str, any]:
if name not in self.prompts:
raise KeyError(f"Prompt '{name}' not found")
prompt = self.prompts[name]
formatted = prompt['template'].format(
examples=self.format_examples(prompt['examples']),
input=input_text
)
return {
'text': formatted,
'tokens': len(self.tokenizer.encode(formatted))
}
@staticmethod
def format_examples(examples):
return "\n".join([
f'Review: "{ex["review"]}" → {ex["sentiment"]}'
for ex in examples[:3] # Use only first 3 examples
])
# Create prompt variations
prompt_manager = PromptManager()
# Minimal Prompt
prompt_manager.create_prompt(
"minimal",
"Classify review sentiment. Output POSITIVE or NEGATIVE only.\n\n{examples}\n\nReview: {input}\nSentiment:",
TRAINING_EXAMPLES
)
# Examples-focused Prompt
prompt_manager.create_prompt(
"examples_focused",
"Learn from these examples:\n{examples}\n\nClassify the following review as POSITIVE or NEGATIVE:\n{input}\nSentiment:",
TRAINING_EXAMPLES
)
# Rule-focused Prompt
prompt_manager.create_prompt(
"rules_focused",
"""Rules:
- If review mentions satisfaction/quality/durability = POSITIVE
- If review mentions problems/defects/disappointment = NEGATIVE
{examples}
Review: {input}
Sentiment:""",
TRAINING_EXAMPLES
)
Part 3: Testing & Iteration (20 minutes)
- Testing Framework
# testing.py
from typing import List, Dict
from langchain import LLMChain, PromptTemplate
import asyncio
class SentimentTester:
def __init__(self, llm, prompt_manager, experiment_tracker):
self.llm = llm
self.prompt_manager = prompt_manager
self.tracker = experiment_tracker
async def test_prompt_variation(self,
prompt_name: str,
test_cases: List[Dict],
hypothesis: str):
self.tracker.start_experiment(hypothesis)
for test_case in test_cases:
prompt_info = self.prompt_manager.get_formatted_prompt(
prompt_name,
test_case['review']
)
response = await self.llm.agenerate([prompt_info['text']])
prediction = response.generations[0][0].text.strip()
self.tracker.log_result(
test_case,
prediction,
prompt_info['tokens']
)
self.tracker.end_experiment([
f"Tested prompt variation: {prompt_name}",
f"Total tokens used: {sum(r['tokens'] for r in self.tracker.current_experiment['test_results'])}"
])
# Usage example
async def run_tests(llm):
prompt_manager = PromptManager()
tracker = ExperimentTracker()
tester = SentimentTester(llm, prompt_manager, tracker)
# Test each prompt variation
for prompt_name in ["minimal", "examples_focused", "rules_focused"]:
await tester.test_prompt_variation(
prompt_name,
TEST_CASES,
f"Testing if {prompt_name} prompt achieves >90% accuracy"
)
# Export results
tracker.export_results("sentiment_classification_results.json")
# Run the tests
if __name__ == "__main__":
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)
asyncio.run(run_tests(llm))
- Analysis & Iteration
# analysis.py
import pandas as pd
import matplotlib.pyplot as plt
def analyze_results(results_file: str):
with open(results_file) as f:
data = json.load(f)
df = pd.DataFrame([{
'prompt_type': exp['hypothesis'].split()[2],
'accuracy': exp['accuracy'],
'avg_tokens': sum(r['tokens'] for r in exp['test_results']) / len(exp['test_results'])
} for exp in data])
# Plot results
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
df.plot(kind='bar', y='accuracy', ax=ax1, title='Accuracy by Prompt Type')
df.plot(kind='bar', y='avg_tokens', ax=ax2, title='Average Tokens by Prompt Type')
plt.tight_layout()
plt.savefig('prompt_comparison.png')
return df
This expanded section provides concrete implementations that developers can use as a starting point. The code is structured to be modular and extensible, making it easy to adapt for different use cases.
Getting Started
-
Choose your core tools:
- One evaluation framework
- One development framework
- One monitoring solution
-
Create your initial workflow:
- Set up experiment tracking
- Define success metrics
- Create basic test cases
-
Build your first agent:
- Start with a minimal implementation
- Focus on reliability over features
- Iterate based on evaluation results
Conclusion
Building reliable AI agents isn't just about the code—it's about establishing robust evaluation methods and maintaining disciplined development practices. By following these guidelines and using the right tools, you can create more dependable AI applications while avoiding common pitfalls.
Remember: The time invested in proper evaluation and testing will save multiples in debugging and maintenance later.